SEVENTH QUARTERLY REPORT STEP 1


PRODUCTION ENGINEERING MEASURE

ON

TRANSISTOR, POWER, 400 MC, 300 MW

CONTRACT NO. DA-36-039- SC-85975
PLACED BY

U. S. ARMY ELECTRONICS MATERIAL AGENCY
PHILADELPHIA, PA.

MOTOROLA Semiconductor Products Inc

Seventh Quarterly Report

Step 1

Production Engineering Measure

400 Mc. 300 mW Power Transistor

Order No. 6030-PP-61
Contract No. DA-36-039-SC85975

This Report Covers the Contract Period:

December 23, 1962 to March 23, 1963

Report Written By:

R. A. Jacobs

John C. Howe

•

Approved By:

Submitted By

MOTOROLA INC.
Semiconductor Products Division
5005 East McDowell Road
Phoenix, Arizona

Table of Contents

Section		Page
1.	Purpose of the Contract	3
2.	Summary of the Report	4
3.	General Background of the Contract	4
4.	Device Design	5
	4.1 Mechanical Design	5
	4.2 Electrical Design	5
5.	Process Technology	5
6.	Electrical Characteristics and Test Data	5
	6.1 General Conclusions	6
7.	Plans for the Eighth Quarter	7

List of Figures

Figure	
1.	Device Outline Drawing
2.	Amplifier Schematic
3.	Oscillator Schematic
4.	Contract Schedule
5.	Device Sectional Drawing
6.	Device Exploded View
7.	Cross Section of Device Structure
8.	Active Area of Device
9.	Data - Group B, Subgroup 2, Post Test
10.	Data - High and Low Temperature Operation
11.	Data - Group B, Subgroup 5, Post Test
12.	Data - Vibration, variable frequency
13.	Data - Constant Acceleration
14.	Data - Shock

1. Purpose of the Contract

The contract is for performance of production engineering, fabrication, and testing of a 400 Mc 300 mW power transistor. The contractor, Motorola Inc., is to supply three hundred and seventy-five (375) engineering samples to the U. S. Army Electronics Research and Development Agency, followed by one hundred (100) preproduction samples to the U. S. Army Electronics Materiel Support Agency.

Upon acceptance of the pre-production samples, with approval by the U. S. Army Electronics Materiel Agency based on an approved test specification, Motorola is to submit two thousand (2,000) pilot production devices.

The pilot line established by Motorola will have a production capability of two hundred (200) good units per eight-hour shift. This capacity shall be demonstrated under operating conditions during the period of manufacture of the pilot production samples.

The device specification may be modified from time to time through agreement by the U. S. Army Electronics Materiel Agency and Motorola, to reflect improvements as progress is made in development of production methods.

Motorola will submit Quarterly Reports for the duration of the contract with report dates based on the date of award (June 23, 1961) and will complete the contract with the submission of a final engineering report, a com-

plete set of bills of parts and materials, and a General Report for Step II (Production Engineering Measure).

This device has been registered with EIA as the 2N2568, and will be identified as such in this and future reports.

2. Summary of the Report

There have been no changes in the device mechanical design, device electrical design, or process technology since the last report. During this quarter the second group of pre-production samples successfully passed the Group B, Subgroups 2 and 5 Environmental Tests. Also during this quarter a group of devices with an all aluminum lead bonding system were subject, along with a control group of devices with a gold-aluminum system, to the vibration variable frequency, constant acceleration, and shock tests. There were no failures on any of the tests.

3. General Background of the Contract

Performance of the contract constitutes a Production Engineering measure (PEM) in accordance with Step 1 of Signal Corps Industrial Preparedness Requirements No. 15 (1 October 1958) per Signal Corps Technicial Requirement SCS96-A (15 May 1961).

The contract was awarded to Motorola on 23 June 1961 by the U. S. Army Electronics Materiel Agency. Due to the non-approval of the pre-production samples and partial

re-test required thereof, an extension of time will be necessary to complete the contract. A revised contract schedule is shown in Figure 4.

4. Device Design

4.1 Mechanical Design

Design of the 2N2568 package is unchanged from what has been previously reported. Figures 1, 5, and 6 illustrate the final package design.

4.2 Electrical Design

Electrical design of the 2N2568 is unchanged since the last report.

5. Process Technology

Process Technology is unchanged since the last report.

6. <u>Electrical Characteristics and Test Data</u>

During the seventh quarter the second group of preproduction samples successfully completed the Group B,
Subgroups 2 and 5 environmental tests. Table 1 is a
summary of the results of the pre-production re-test.
Unit #6 failed after the Group B Subgroup 2 tests. The
data indicates an open base. It is significant to note
that there were no failures due to faulty packages as
were encountered during the first pre-production environmental tests. Unit #85 failed after the salt atmosphere test. Post test electrical data is within specification on this unit, but it is considered a failure due

to the loss of the ground (case) lead. Again, there were no failures during the re-test of the same type as experienced during the first pre-production environmental test. Figures 9 through 11 are a compilation of the post test data.

Also during the seventh quarter, the first group of devices with an all aluminum lead bonding system were subjected to some of those environmental tests which measure the mechanical stability of the lead bonding system. With each group of all aluminum system devices was tested a control group of devices having the standard gold-aluminum system. Figures 12, 13, and 14 show, respectively, the data for vibration variable frequency, constant acceleration and shock tests. The conditions for these tests were as specified on the 2N2568 specification. Because the failures from these tests would be expected to be of a catastrophic nature rather than a degradation of parameters, some devices used had hee less than the minimum specified for a 2N2568. There were no failures on any tests. Presently in process but not yet completed are ultra-sonic cleaning and vibration fatigue tests.

6.1 General Conclusions

The re-test has shown that the problems which caused failures during the first pre-production environmental tests have been solved. The failures which did occur are well within the AQL required by the device specifica-

tion. The initial tests conducted on devices with an all aluminum lead bonding system indicate that this system will be able to meet all those tests required of the standard gold-aluminum system.

7. Plans for the Eighth Quarter

The pilot production run is scheduled for completion during the eighth quarter. Additional work will continue on the all aluminum lead bonding system.

Summary of Re-tests Table 1

;

		Unit No.	No. of Units		Failure No.(Unit)
Group	A	1-100	100	0	
Group	В				
	Subgroup 2				
	Soldering Temperature Cycling Thermal Shock Moisture Resistance	1-50 1-50 1-50 1-50	50 50 50 50	} 1	#6
	Subgroup 5				
	Reduce Barometric Pressure High Temperature Operation Low Temperature Operation Salt Atmosphere	51-100	50 50 50 50	0 0 0 1	#85
	Subgroup 7				
	Thermal Resistance	1-10 51-60	} 20] ₀	

MILITARY SPECIFICATION

TRANSISTOR, GERMANIUM, POWER, 400 MC TYPE SigC-2N2568

1. SCOPE

1.1 Scope.- This specification covers the detail requirements for germanium, UHF, power transistors capable of delivering 300 mW of output power at 400 Mc. The transistors have the following characteristics at $T_{\rm C}=25^{\circ}\pm3^{\circ}{\rm C}$. (See 3.2):

	C _{ob}	h _{ib}	^h fe	P _G	Po	h _{FE}
	uuf	ohms	<u>db</u>	<u>db</u>	<u>Wm</u>	
Minimum Maximum	3.0	15 + j50	6	10	300	15

1.2 Performance.-See 3.4 herein.

1.3 Maximum ratings.

BVCEO	BV _{CES}	BV _{EBO}	IC	P _c	Тj	T _{stg}
<u>Vdc</u>	<u>Vdc</u>	<u>Vdc</u>	mAdc	<u>W</u>	°C	°C
20	35	1	100	1	100	-65 to +100

2. APPLICABLE DOCUMENTS

2.1 The following specifications and standards of the issue in effect on date of invitation for bids, form a part of this specification, to the extent specified herein:

SCS-96A

SPECIFICATIONS

MILITARY

MIL-S-19500

Semiconductor Devices, General Specification for

STANDARDS

MILITARY

MIL-STD-202

Test Methods for Electronic and Electrical Component Parts

DRAWINGS

SIGNAL CORPS

SC-A-46600

Preproduction Sample Approval In Lieu of Qualification Requirements in Specifications

(Copies of specifications, standards, and drawings required by contractors in connection with specific procurement functions should be obtained from the procuring agency or as directed by the contracting officer. Both the title and number or symbol should be stipulated when requesting copies.)

- 3. REQUIREMENTS
- 3.1 Requirements. Requirements for the transistors shall be in accordance with Specification MIL-S-19500, and as specified herein:
- 3.2 <u>Abbreviations and symbols.</u> The abbreviations and symbols used herein are as defined in Specification MIL-S-19500, and as follows:

I_c......collector current
P_c......collector power
P_i.....input power

Po.....power output

- 3.3 <u>Design and construction</u>.- The design and construction of the transistors shall be in accordance with applicable requirements in Specification MIL-S-19500. Physical dimensions are specified in figure 1.
- 3.3.1 <u>Transistor case.</u> The transistor case shall incorporate a suitable means for readily mounting the device and dissipating the required power. The case shall be electrically insulated from the collector, emitter, and base.
- 3.3.2 Operating position. The transistors shall be capable of proper operation in any position.
- 3.4 <u>Performance characteristics</u>.- The transistor performance characteristics shall be as specified in Tables I and II herein.
- 3.5 Type-designation marking. The transistors shall be marked with the letters "SigC' and the "2N" designation of the device. The "2N" designation of the device shall be "(X-3)" until an identification number conforming to type designation requirements of Specification MIL-S-19500 has been established.

4. QUALITY ASSURANCE PROVISIONS

١

- 4.1 <u>General.- Except</u> as otherwise specified herein, the responsibility for inspection, general procedures for acceptance, classification of inspection and inspection conditions and methods of test shall be in accordance with MIL-S-19500, Quality Assurance Provisions.
- 4.2 <u>Preproduction Sample Approval.</u> The Preproduction Sample Approval requirements in Signal Corps Drawing SC-A-46600 replace any Qualification requirements referable to the product covered herein.
- 4.3 Acceptance inspection. Acceptance inspection shall be in accordance with requirements in Specification MIL-S-19500, Quality Assurance Provisions, and as otherwise specified herein. Groups A and B inspection shall consist of the examinations and tests specified in Tables I and II, respectively, herein. Acceptance inspection shall include inspection of preparation for delivery (see Section 5 herein).
- 4.3.1 Acceptable Quality Levels and Inspection Levels. The Acceptable Quality Level (AQL) and Inspection Level specified for a subgroup in Tables I and II herein shall apply for all of the tests, combined, in the subgroup.

- 4.4 <u>Destructive tests.-</u> The Group B, Subgroups 2, 3, 4, 5 and 6 tests are considered destructive. However, the tests of Subgroups 2 and 3 can be considered non-destructive if sufficient evidence is presented to the inspection authority to that effect. Acceptable evidence, for example, could be the repetition, ten times, of the Subgroups 2 and 3 tests on the same sample units without any significant electrical device degradation. This test repetition procedure need be done only once at inception of acceptance inspection, provided no change in design or of production techniques has been effected.
- 4.5 <u>Disposition of sample units.</u>— Sample units that have been subjected to Group B, Subgroups 4, 5 and 6 inspection shall not be delivered on the contract or order. Sample units that have been subjected to and have passed Group B, Subgroups 1, 2, 3, 7, 8 and 9 tests not determined to be destructive tests may be delivered on the contract or order provided that, after Group B inspection is terminated, those sample units are subjected to and pass Group A inspection. Defective units from any sample group that may have passed sampling inspection shall not be delivered on the contract or order until the defect(s) has(have) been remedied to the satisfaction of the Government.

4.6 Particular examinations and test procedures

- 4.6.1 Oscillator power output test. The specified voltage and current shall be applied to the respective terminals, and the power output of the oscillator shall be measured at the frequency specified.
- 4.6.2 <u>Small-signal short-circuit input impedance test.-</u> The test shall be made as specified in paragraph 50.37 of MIL-S-19500; however, the magnitude shall be separated into real and imaginary parts.

ì

Table 1. Group A Inspection

MIL-S-19500	00	Conditions	AQL	Insp.	Ct.01	. Limits	S	112
Appx. C. Ref. Par.	or Test (see 4.3)	(see 4.1)	(percent defective)	or Code	тодшбе	Min.	Мах.	חוודר
	Subgroup 1							
30.13	Visual & mechanical examination		1.0:Major 2.5:Minor	11	;	;	1 1	ŀ
	Subgroup 2							
50.9	Collector cutoff current	v_{CE} =15Vdc v_{EB} =0	1.0	11	CES	;	2.0	uAdc
50.9	Collector cutoff current	v_{CE} =35 v_{dc} v_{EB} =0			LCES	! !	100	uA dc
9*05	Emitter cutoff current	$V_{EB} = 1 \text{Vdc}$ $I_{C} = 0$			LEBO	; ;	100	uAdc
50.40	Static forward current transfer ratio	V _{CE} =5Vdc I _C =40mAdc			h _{FE}	15	09	:
50.25	Saturation voltage	I _C =100mAdc I _p =8.0 mAdc			VCE(sat)	1	0.75	Vdc
50.1	Collector Breakdown voltage	$I_{C} = 40 \text{ Adc}$ $I_{B} = 0$			BVCEO	20	! !	Vdc
		Pulse Test Repetition Rate=1Kc Pulse Lengths2psec	e=1Kc 1sec					

Table 1. Group A Inspection (cont'd)

MIL-S-19500 Appx. C Ref. Par.	0 Examination or Test (see 4.3)	Conditions (see 4.1)	AQL (percent defective) c	Insp. Level or Code	Symbol	Limits Min. M	Lts Max.	Unit
50.15	Subgroup 3 Power Gain	V _{CB} =15Vdc I _C =40mAdc f=400mc P ₁ =30mW Fig. 2			$^{P}_{G}$	10	!	Ą
77	Oscillator power output	V _{CB} =15Vdc I _C =40mAdc f=400mc Fig. 3			a ^o	300	•	Wm
50.19	Collector capacitance	$V_{CB}=15V$ dc $I_{E}=0$ Case Grounded	1.0	II	c ^o p	ļ	3.0	Jnn
50.33	Small signal short circuit forward current transfer ratio	V _{CE} =10V dc I _C =40mAdc f=400mc			hfe	9	:	ਚ

1/ Test circuit shall be in accordance with Figure 2.

^{2/} See 4.6.1 herein. Test circuit shall be in accordance with Figure 3.

Table 1. Group A Inspection (cont'd)

4

MIL-S-19500 Appx. C Ref. Par.	0 Examination or Test (see 4.3)	Conditions (see 4.1)	AQL Insp. (percent Level defective) or Code	Symbol	Limits Min. Max.	Unit
3/	Subgroup 3 (cont'd) Small-signal short- circuit input impedance	V_{CB} =10Vdc I_{C} =40mAdc f = 400 mc		qī _ų	15 + j50 ohms	ohms

TABLE II. Group B Inspection

MIL-S-19500		Conditions	AQL	Inspection	Sumbo1	Limits	its	Ilaft
Appx. C Ref. Par.	or lest (see 4.3)	(see 4.1)	(percent defective)	Code	Toomise .	Min.	Max.	OULL
30.9	Subgroup 1 Physical dimensions		2.5	1 6	;	:	į	į
40.13	Subgroup 2 Soldering		4.0	L6 Reduced:L4	•	1 1 8	; !	! !
40.14	Temperature cycling	-65° to $+100$ °C 5 cycles; $\underline{1}/$		Tocedule	ļ	;	;	;
40.16	Thermal shock (glass strain)	$T(high) = 85^{\circ} + 3^{\circ}C$ $T(low) = 0 \pm 2^{\circ}C$			i	;	i	!
40.6	Moisture resistance				i	1	1	1
40.10	Shock	No Voltages 5 blows in each direction x_1, x_1 , Y_2 and Z_1 ; (total of 20 blows) 1500G	4.0	L6 Reduced:L4 Procedure:R-1	}	ŀ		;
40.4	Constant acceleration (Centrifuge)	20,000			;	:	i	;
40.18	Vibration fatigue	No Voltages			1	;	;	!
40.20	Vibration, variable frequency	${}^{\mathbf{V_{GB}}} = 20 \text{ Vdc}$ ${}^{\mathbf{I_{E}}} = 0$:	:	t 1	;

(cont'd)	
Inspection	
Group B	
TABLE II.	

I

MIL-S-19500 Appx. C Ref. Par.	Examination or Test (see 4.3)	Conditions (see 4.1)	AQL (percent defective)	Inspection Level or Code	Symbol	Limits Min. Ma	its Max.	Unit
40.5	<u>Subgroup 4</u> Lead fatigue	$\frac{2}{1}$; no lead restriction	0**	L6 Reduced:L4 Procedure:R-1	; ;	1	-	!
40.1	Subgroup 5 Barometric pressure reduced (altitude operation)	V _{CB} =35 Vdc I _E = 0	4.0	L6 Reduced:L4 Procedure:R-1	ļ	8 8	4 6 7	}
30.6	High temperature operation:	T _A = 85°C			! !	;	!	
50.9	Collector cutoff current	$v_{CE} = 15 \text{ Vdc}$ $v_{EB} = 0$			1 _{CES}	ļ	100	uA dc
50.40	Static forward current transfer ratio	$\mathbf{v_{CE}} = 5 \text{ Vdc}$ $\mathbf{I_C} = 40 \text{ mAdc}$			hr E	!	80	!
30.7	Low temperature operation:	T _A = -55°C			† 1	;	:	;
50.40	Static forward current transfer ratio	$V_{CE} = 5 \text{ Vdc}$ $I_{C} = 40 \text{ mAdc}$			PE 1	7.5	i	1
8.04	Salt atmosphere (corrosion)	3/			1	į	† !	:
40.15	Subgroup 6 Tension test	Tension force:2 lb.	4.0	1.6				
40.17	Torque	Torque:8 15-in		reduced: L4 Procedure: R-1				! !

σ

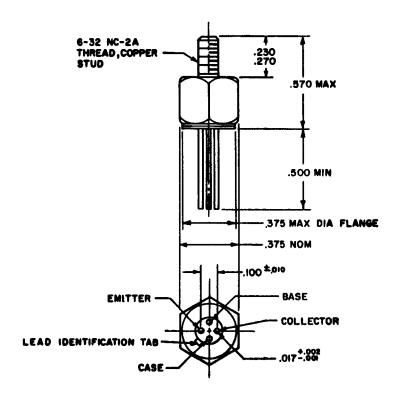
(p, :uoo)
Inspection (
Group B
TABLE II.

I

i

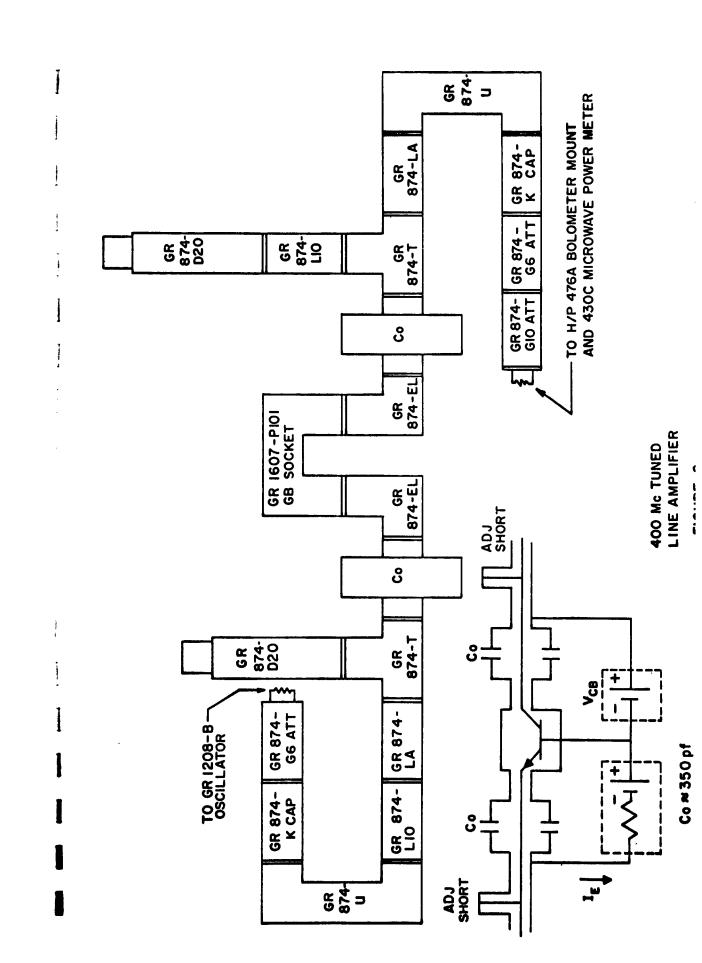
MIL-S-19500 Appx. C Ref. Par.	00 Examination or Test (see 4.3)	Conditions (see 4.1)	AQL (percent defective)	Inspection Level or Code	Symbol	Lim.	Limits in. Max.	Unit
30.11	<u>Subgroup 7</u> Thermal resistance		4.0	L6 Reduced:L4 Procedure:R-1	0 9-c			M:u/Jo
40.7	Subgroup 8 Storage life	Method B Tsto=+100 °Cmin	λ=10		1	-	;	8 5 0
40.7	Subgroup 9 Operation life	Method B	λ=10		ļ			
	End point tests for Subgroups 2, 3, 5, 6, 8 and 9:	VCB = 25 Vdc IC = 40 mAdc IC = +25°C					! !	; ; ;
50.9	Collector cutoff current	$_{\rm VCE}^{\rm VCE} = 15 \rm Vdc$			ICES		0.4	uAdc
50.9	Collector cutoff current	$V_{CE} = 35 \text{ Vdc}$ $V_{EB} = 0$			LCES	ļ	200	u A dc
50.6	Emitter cutoff current	$V_{EB} = 1 \text{ Vdc}$ $I_{C} = 0$			LEBO	;	200	uA dc
50.40	Static forward current transfer ratio	$V_{CE} = 5 \text{ Vdc}$ $I_{C} = 40 \text{ mAdc}$			h _{FE}	13	70	;

Per Method 102A in Standard MIL-STD-202. Rejects from electrical-test samples may be used for this test. Marking shall have remained legible at conclusion of this test.

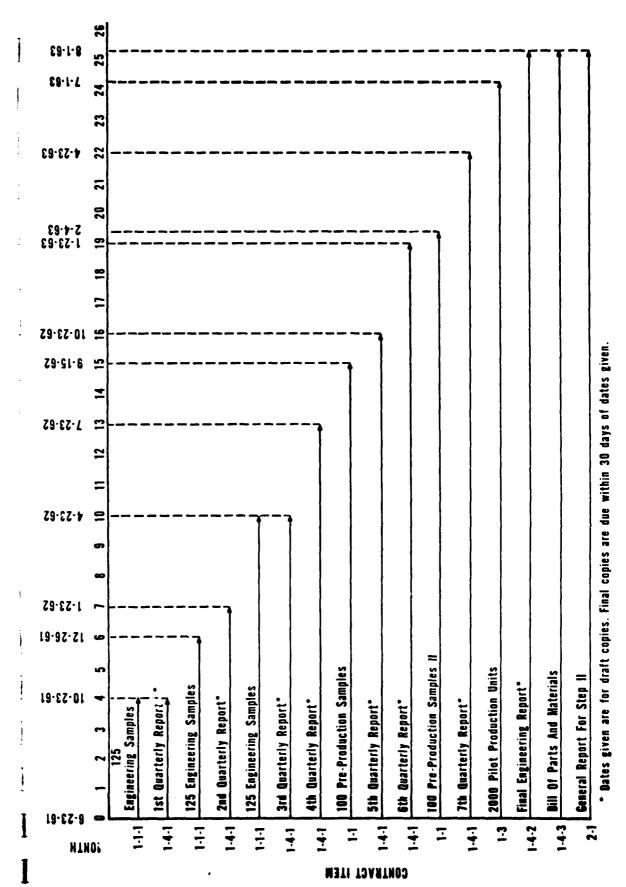

5 PREPARATION FOR DELIVERY

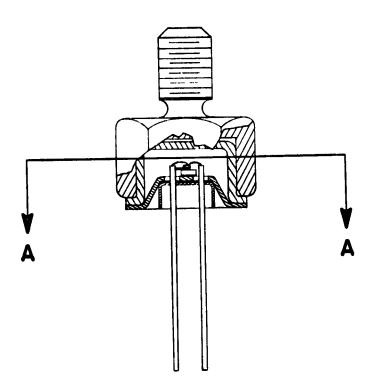
5.1 Preparation for delivery. Preparation for delivery shall be in accordance with Specification MIL-S-19500.

6 NOTES


6.1 Notes. - The notes included in Specification MIL-S-19500, except for those concerning Qualification, are applicable to this specification. (See 4.2 herein.)

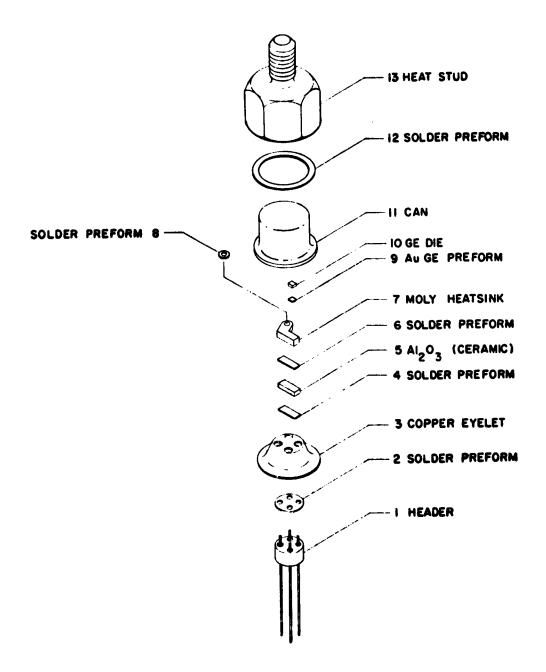
NOTICE: When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

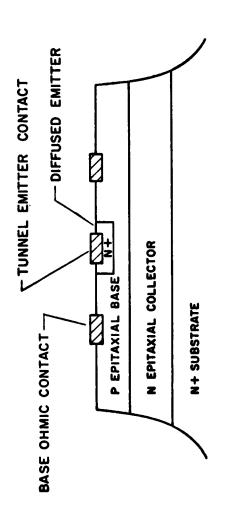

OUTLINE DRAWING


FIGURE I

LINE OSCILLATOR

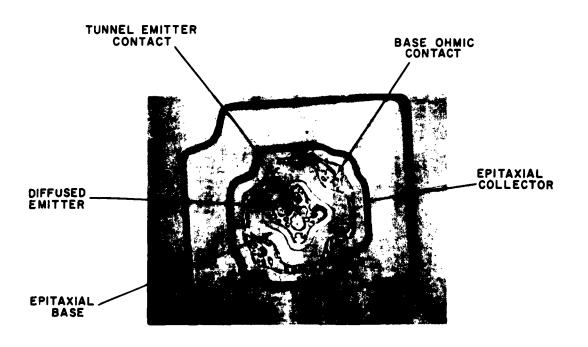
FIGURE 3





SECTION AA

DEVICE SECTIONAL DRAWING
FIGURE 5



DEVICE EXPLODED VIEW
FIGURE 6

3

CROSS SECTION OF DEVICE STRUCTURE

ACTIVE AREA OF DEVICE

FIGURE 8

NOTE: THE LINE DEFINING THE DIFFUSED EMITTER HAS BEEN DRAWN ON THIS PHOTOGRAPH FOR ILLUSTRATIVE PURPOSES ONLY.

FIGURE 9 - 1 PAGE 1 OF 7

GROUP B POST TEST DATA

SUBGROUP 2

DEVICE 24 2568 LOT NO. SAMPLES TE

	Ices	Ices	I#80	hee
	VEB = 0	VCE + 15 V	VEB= 1.0 V Ic = 0	VCE - 5V Ic = 40mA
UNIT	u Adc	u Adc	u Ade	
MIN	_	_		13
MAX	200	4.0	500	70
0	.20		110.5	22.5
0.5		./2	11.5	36.4
03		.//	27.0	18.6
04		.10	8.0	4/.7
05	.32	.18	22.0	27.8
06	1.5	.35		
07	.54	-17	7.5	40.0
08	.42		8.4	35.7
09	اعمــا	- 11	15.5	34.5
	7.0	16	46.0	37.0
=	.90	34	-/4	38.4
12	 • / 7 	1.28	-/0	27.4
13	 • / ^ 	.33	.07	40.0
14	 	.25	80.	40.0
15	1 1 1 1 1	.26	-16	36.3
16	 • 7 7 	1.14	-10	30.8
17	1-6-7	26	1.20	41.7
18	79	17	.16	47.6
19	1 4 4 1	1.21	17.5	23.5
20	 	30	./3	420
21	.62	1.23	.56	45.5
22	1 • 1 4	.//a	-/0	27.4
23	1 · 3 · 1	-/8	./3	45.7
24	 • 0 = 	.3/	1-1-10	25.0
25	4.22	.58	.87	44.5
DATE		 		
INIT	<u> </u>	<u> </u>	<u> </u>	

		 			 	<u> </u>
REMAR	KS					
NAME_		 	_TITLE		 DATE	

FIGURE 9-2

PAGE 2 OF 7

GROUP B POST TEST DATA

PRE- PRODUCTION

DEVICE 242568 LOT NO. SAMPLES IL

	Ices	ICES	IEBO	hfe
	VCE = 35V		VEB = 1.0 V	Vc = 5V
	VEBTO	VEB . O	Ic * O	Ic: 40mA
INIT	u Ade	MAde	Ju Adc	
MIN				13
XAN	200	4.0	200	70
26	.78	27	70	31.8
27	4.4	.27		3/. 2
28	1.55	. 47	.40	54.8
29	راه	, 23	./2	34.5
30	48	ا ب د .	11.0	22.2
31	٧٤.	2.2	.11	41.7
32	.5.2	.19	./0	28.2
33	1.95	.84	1.05	الون الح
34	5.3	.06	18.6	37. 2
35	1.5	61	.57	48.8
36	.56	.21	.12	2/,2
37	4.8	./8	.18	40.0
38	SI	.38	1.1	34.5
39	1.8	1.1	.60	44.5
40	46	14	2.05	34.5
41	.24	10	80	26.5
42	.58	.22	2.35	27.8
43	00	-11	.74	3.2.8
44	.26	.16	1.0	32.2
45	.50	./2	4.8	27.8
46	.40		1.85	30.7
47	-62	1.24	1.95	23.5
48	.42	.17	1.5	86.7
49	 • - / / 	1,3	1.15	31.2
50	.26	-11	1.4	33.3
DATE				
INIT				

RE	M	AF	lK	S

_ TITLE__ DATE_

GROUP B HIGH AND LOW

PAGE_3_OF_7_

TEMPERATURE TEST DATA

DEVICE 2N2568 LOT NO. SAMPLES II

	Ice	\$		hre					FE		
	VCE: 15	57	VCE	= 5V			Vce	. 5	V		
	VE8=0	TA = 85°C	Ic:	+ 40mA	T _A - 8	5°C	Ic	* 40	m A	TA = -	55°C
											}
UNIT	иAda				 		-				
MIN	-		- 1				7.5				
MAX	100		80				1				
51	4.1		35.7				22.2				
52			61.6				33.3				
53			36.4				21.0				
54	21.5		66.7		1		35.7			1	
55	5.0		34.5		<u> </u>		20.0			ļ	ļ
56	4.7		33.3		 		20.0			 	↓
57	6.2		47.7		 _ _ _		21.4			1	
58	7.3		24.5		_		21.3		<u> </u>	—	-
59	7.4		25.5			ļ	17.7	ļ		_	↓
60	7.0		45.5		 		م.27			-	┼
61	60		26.3		+		15.4			├	
62	 	 -	50.0		┼		27.4	ļ	-	-	
63	1 3·4		43.5		 	 	26.3	<u> </u>	<u> </u>	 	
65	 -7•-/ 		40.0		+		22.8			 	
66	5.5		37.6		 		22.3			+-	
67	6.7		22.2		 		/3.3			 	
68			21.0		 	 	13.2			 	+
69	3.2		35.7 26.8		 		21.0 13.3		-	†	
70			35.8		 		73.3 22.3			†	1
71	6.2		33.3		1		17.4				
72			36.4		1		22.7				1
73	1		31.7		1		21.3				
74			25.6				15.3				
75			29.4				17.8				
DATE											
INIT											

REMARKS				
NAME	TITLE	 DAT	E,	

FIGURE 10-2

GROUP B
HIGH AND LOW PAGE 4 OF 7
TEMPERATURE TEST DATA

PRE-PRODUCTION DEVICE 2N2568 LOT NO. SAMPLES IT

		ICES			hee				h		
	VCE =	15V		Vc E	. 5V			VCE	- 5V		
	VEB	=0 TA	±85°C	Ic:	Amor:	74.8	5°C	Ic =	40mA	TA	- 55°C
UNIT	MAde			1				_			
MIN	-			1				7.5			
MAX	100			80				1			
76	6.1			38.4				13.5			
77	7.2			30.8				18.6			
78	6.0			39.2				23.8			
79	6. a			40.0				23.5			
80	6.7			36.7				23.2			
81	5.9			40.0				23.5			
82	8.0			as.5				17.4			
83	8.1			344				21.0			
84	12.0	-		34.5				الملا			
85	7.5			35.4				20.0			
86	6.7			28.6				17.7			
87	5.1			36.4				22.2			
88	4.5			38.5				22.8			
89	8.2			3/.2				19.5			
90	9.5			31.2				18.2			
91	5.4			عاماه				17.4			
92	4.1			29.4				17.7			
93	م.لا			36.4				22.2			
94	5.8			30.7				18.6			
95	5.4			37.6				23.5			
96	6.8			a7.8				16.7		\bot	
97	4.6			38.5				23.5			
98	5.7			33.3				2/.3			
99	8.3			37.A				22.2			
100	6.2			37.0				<i>aa.</i> a			
DATE											
INIT											

INIT										
REMA	RKS									
NAME			 	 TITLE	 	 	DATE	•		 Tes:
									4	

FIGURE 11-1

PAGE_5_OF_7_

GROUP B POST TEST DATA

SUBGROUP 5

DEVICE 242568 LOT NO. SAMPLES I

	Ices		Ices	LEBO	hre
		54	/CE = 15 V	VEB = 1.0 V	VCE = 51
	VEB = C	o . '	VEB = O	Ic = 0	Ic = 40 m A
UNIT	n Ade	\dashv	n Ade	uAdc .	
MIN	_		_	1 200	13
MAX	200		4.0	200	70
51	$\overline{}$.//a	17.5	30.7
52	2.25		.60	6.6	50,0
53			.20	10.5	27.4
54	2.05		.73	.80	50.0
55	40		.15	17.5	27.4
56			13	15.5	27.0
57	1.4		19	28.5	40.0
58	.46		./2	4.0	28.6
59	.90		16	3.9	24.1
60	.46		./5	2.3	37.0
61	44		. 14	.73	21.2
62	.5		.15	.77	40.0
63	.34		/2	.65	35.7
64	.35		14	54	3/.7
65	.43		24	1.25	30.7
66	.78		.33	20.0	18.1
67	38		./7	19.6	17.7
68	.36		.16	13.0	28.6
69	.25		.10	25.5	17.4
70	.62		. 18	3,3	27.4
71	1.50		.30	2.8	22.2
72	.52		8 2.	<u> </u> .a9	27.4
73	27		./7	a.7	27.0
74	.71	$-\downarrow$.15	3.1	21.0
75	1.90		.16	1.2	24.0
DATE					
INIT					

REMARKS		
NAME	TITLE	DATE

FIGURE 11-2

PAGE 6 OF 7

GROUP B POST TEST DATA

PRE- PRODUCTION

DEVICE 242568 LOT NO. SAMPLES IT

	ICES	ICES	IEBO	hee
		VCE = 151 VEB = 0	VEB = 1.0 V Ic = 0	Vce = 5V Ic = 40m A
JNIT	n A de	n Adic	,, Ad.	
MIN	_			13
IAX	200	4.0	200	70
76	1.5	.21	.61	317
77	2.1	.22	9.6	25.6
78	.44	.14	1.8	<i>51.7</i>
79	44	.19	2.1	=1,2
80	.30	.16		= :7
81	.28	1,12	×/	<i>≥ 1.7</i>
82	78	.28	49	33.7
83	.66	.33	3.4	25.6
84	1.15	.44	3.3	28,4 June 1
85	.40	.20	2.7	2: K English
86	.50	.19	1.25	24.0
87	.72	. 16	2.9	30.3
88	.48	.16	1.25	3/.2
89	1.1	.33	7.3	25.6
90	.97	31	,57	25.0
91	56	.17	8.2	22.2
92	.73	.16	9.8	25.0
93	.74	.44	.50	30.7
94	.90	./5	4.1	25.0
95		.14	4.4	30.8
96	.84	.20	2.1	22.3
97	.57	112	1.0	31.2
98	.42	14	3.5	28.6
99	1/4	.27	2./	30.8
100	.48	.18	1.2	30.8
ATE				
NIT				

KEMAKKS		
NAME	TITLE	DATE

FIGURE 12

VIBRATION PAGE OF VARIABLE FREQUENCYTEST DATA

DEVICE AN 2568 LOT NO. SPECIAL

		ECES	I	ERO		h F E V C E = 5 V I E = 40 m A				
	VCE	= 15 Vdc	VE	B=1.0 vac						
		3=0		e = 0						
	MITHE	70 ST TEST	INITIAL	Post	INITIAL	Post				
UNIT	usda	ushe	LANC	unde		-				
MIN										
MAX										
	.24	.24	2.05	2.4	23.4	23.5				
2	.27	.26	. 24	. 27	14.5					
3	.44	44	3.3	3.8	25.0					
4	.30	29	7.5	8.2	22.2					
5	.26	. 26	1.75	2.1	32.2					
6	.28	.27	1.5	1.6	24.	24.4				
7	.27	.27	4.0	4.3	21.5	22.2				
8	124	1.24	2.8	2.9	25.4	25.6				
9	.27	27	3.8	4.0	22.1					
مر ا	.28	28	4.6	4.6	25.0					
ш_	.60	-86	9.4	40.0	17.8	18.2				
12	26	1.22	ام.س	11.5	16.6					
13	.36	38	14.0	15.0	17.7	1				
14	.37	37	9.2	9.9	17.7	12.7				
15	_ حد	1.32	8.7	9.2	21.2	21.5				
16	1110	1.10	7.6	8.0	14.5					
17	.28	1.29	8.6	9.0	د.دد					
18	.26	.26	9.0	9.6	ع رد	1 1 1 1				
19	.33	.35	9.1	8.5	16.6					
20	.23	1.23	8.4	18.8	22.7	23.2				
						 				
	 -					 				
<u> </u>						╂══╂╌╌╂╌╌╂				
_				+		 				
DATE										
INIT										

REMARKS

AM- AR SYSTEM

AR SYSTEM

NAME	TITLE	DATE
		MQC-

FIGURE 13	5445
CONSTANT	PAGEOF
ACC ELERATION	TEST DATA

DEVICE 242568 LOT NO. SPECIAL

	:	TAES	7	- FBO		hFE				
		CE= 15 Vdc		B = 1.0 vdc		E=5V				
<u> </u>		/EB=0		Ec = o		Ic=40 mA				
	MIT! AL	78.57 7E.51	INTIAL	Post TEST	NITIN	Post				
UNIT	. Ada	unde	2604	A de						
MIN										
MAX										
1 2	.51	.48	14.5	15.5	12.3	12.3				
2	29	.26	16.0	17.0	33.3	33.3				
_ يـ ا	اهدرا	.27	5.4	9.3	55.6	57.2				
4	1.26	25.	12.5	14.0	26.3	26.6				
4 4	.38	1.34	11.0	12.0	34.5	34.5				
-	.96	1.92	8.1	8.6	29.4	29.4				
7	1.26	ا بد.	1.25	1.35	/2.3	ا 3.31				
8	1.57	.57	3.8	4.0	10.7	10.3				
9	.25		1.25	1.30	19.0	19.0				
	2.0	1.85	10.0	/0.5	11.7	12.4				
_ 4	.38	.38	5.9	6.4	14.5	14.5				
<u>لا</u> الم	-	.33	9.0	9.7	/2.3	12.3				
SYSTEM F. E.		.30	7.4	8.0	10.7	10.7				
	1.50	2,05	9.0	9.7	11.4	11.9				
م <u>الح</u>		.43	8.6	9.4	9.4	9.4				
1/4		.33	11.5	12.5	15.1	15.4				
17 JR	.45	.44	12.5	13.5	15.4	15.4				
₹ <u>78</u>	1.30	.30	11.5	18.0	15.4	15.7				
	 									
-	+ +			+						
-	+-+			+ + +						
-	 			+-+-	- -	 				
-	+-+				 	+ + -				
-	+-+			_		 				
DAT										
1017		- - - 		1 1						

F١	G	u	R	E	14	
----	---	---	---	---	----	--

PAGE	OF
PAVE	UF

SHOCK TEST DATA

DEVICE 2N2568 LOT NO. SPECIAL

	TCES VCE = 15 vde				I 500 VEG = 1.0 Vdc					hfE VCE = 5V					
	VEB: O				Ic = 0					Ic =40 mA					
	INITIAL	INITIAL POST TEST			MITIAL POST TEST				Post Test						
UNIT	uade		MAde			uade		mac			-		_		
MIN															
MAX															
Γ	.74		.68			1.35		1.6			19.0		16.6	-	
2	.49		. 35			1.30		1.55			17.8		19.0		
3	.36		.32			1.0		1.2			16.0		15.4		
4	, ጋ ⴣ		. 22			1.15		1.4			17.8		17.8		
5	عادر		, DÝ			1.3		1.45			13.8		12.3		
6	ماد،		. 24			11.6		13.0			12.7		12.9		
7	.38		. 34			11.0		ر ع			9.8		10.0		
8	. 25		.19			12.5		1.5			/3.1		12.9		
9	1.30		1.40			13.5		1.6			15.0		15.4		
10	.45		.37			10.0		1.15			6.45		6.56		
]												
											<u> </u>				
		·												,	
												·			
GATE															
INIT															

REMARKS

ALL AR SYSTEM A4-AR SYSTEM

NAME_

TITLE_

DATE_